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This phenomena of change in the frequency of scattered X-ray is called Compton effect.
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de Broglie’s hypothesis: Dual character of matter r ’
De Broglie Wavelength
Einstein pointed out: Light has both particle and wave nature A= E — Fnb"ﬁ

de Broglie expanded: All form of matters show dual character

A = wavelength P= Momentum
Vv = Speed m= Mass
h = Planck's Constant

Special theory of relativity: E = mc?

(6.63 x 103 J+S
hc J
Planck’s equation: E = hv = 7
Louis de Broglie Therefore, mc2=% A= :eV; e=1.6x10"°C, m=9.11x 1031 Kg
" /_
A=— " N
mc - 6.626x10
For, all matter other than light ‘c’ is replaced by ‘v’ V2V x1.6x107° x9.11x107
=% = 1—12'2?“04“ meter
W
If an electron with charge e is accelerated with a potential V, then its (or) l=%ﬁn
kinetic energy,
1
KE==mv? =eV
2 When V = 10 -10,000 Volt, A = 3.877 to 0.1226 A
2elV
S>v= [—

m



Davisson—Germer experiment
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R e N therefore, 2nr = ni

Bohr said, “The electron is bound in a circular orbit around the nucleus
such that the angular momentum is
quantized in integral units of Planck’s constant”

nh

muvr = - ; m = mass of electron, v = velocity of electron, r
T

= radius of the orbit

Electron behaves as a stationary wave which extends round
the nucleus and always in phase.
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Now, according to de Broglie 4 =%
nh

Combining, mvr = po



Significance of de Broglie’s concept

1 The wave character of a large object in motion, has no practical significance, since their wavelength is too small to be
observed and hence cannon be measured.

1 The wave character of a small object in motion has practical significance, since their wavelength is easily observed in
electromagnetic spectrum.



Heisenberg’s uncertainty principle

It is not possible to determine simultaneously and precisely both position and momentum (or velocity) of a microscopic moving
particle (e.g. Proton, neutron or electron)

_ h
Mathematically, Ax X Ap = — Q. Weight of a cricket ball is 200 g and uncertainty of position is

41T
Ax = uncertainty in position 5pm. What is the uncertainty in velocity?
Ap = uncertainty in momentum Q. Uncertainty position of electron is 5 pm. What is the
uncertainty of velocity? Mass of electron = 9.1 x 103! kg.

Alternatively, Ax X (m X Av) = o

Uncertainty & Bohr’s theory

» Heisenberg’s principle tells that, we cannot describe the exact path on an electron due to its wave nature.
» Thus Bohr theory, which tells that electrons move in a fixed path, is no longer correct.
> At most, we can predict the probability of locating the electron with a probable velocity in a particular region of

space round the nucleus.



Recollecting Davisson—Germer experiment...

Schrodinger Wave Equation
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Time-independent wave equation
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¥ is called wave function : .1
21X Erwin Schrodinger

p(x,t)=A smTcos 2TVt  mx
— l}/(x)f(t) P(x)=A SIHT

E = total energy, V = potential energy




P(x)=A sinz%x
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Significance of Wave Function
- W and W * Y is imaginary but Y¥* is real.

AAm
Complex conjugate W =a+ib
Y*=a-ib
7Y I Z=a+Dhi
' |¥|? or WW* is proportional to the probability of finding a particle at a given time
\ a Re i.e. probability of an electron finding in a box of length dx, width dy, and height dz is
| | P x Y¥*dxdydz = Y¥ "0t
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VAVAN




s rw-vw swiGuiial i

Well behaved or acceptable wave function vy o

W(x)

1. ¥ must be single valued.

2. W and its first derivative must be continuous. (a) (b) ©
y(x) ‘r | v(x) /

3. W must be finite; i.e. for all possible values of x, y and z, /'/
L \4 ZA\NY I S

| Y¥*9t must exist. R «x x N e\ e

(d) (e) | )

N taa .

Example 2.2. Which of the followxng functions are acceptable in quantum
mcchanics ? s
(!) sinx, (if) tanx, (iii) cosecx, (iv) cosx + sinx;for0 <x < 7/2

—ar . =ax; F e —bxz o E —ax
(V) e ™, () xe™;forx = 0 and (vii) e (viii)e ™ ;forx <0
When x lies between 0 and /2, the function (i) and (iv) are acceptable while

(it) and (i) are not acceptable because (i) tends to infinite at
to infinite at x = 0. (i) tmte at x - /2 and (1) tends

Whenx =2 0(v) is acccptablc while (vi) is not acc i
¢
infinito as x (vi)i . ptablc because it tends to

Whenx < 0 (vu) is acccptablc while (viii) is not acceptable.




Normalised and Orthogonal function

The probability of finding a particle in the whole space must be unity.

[Pyrdr =1

+ 0o

j Yy*dr =1 ¥ and #* are each other complex conjugate

If ¥ fulfils the above condition then it is called normalised.

For two wavefunctions ¥, and ¥,, if
+ 00

f ‘1”1*1/)2(11'20

— 00

¥, and ¥, are called orthogonal to each other.
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~ Example 2.3. Normalisc the functions y =x~ over the mterval 0 < x <
k 1s a constant).

Let the normalised function bq N:—l:2 . Therefore, by (2'15)

k k

f(N¢)"dx=fN2x4dx=1

0 0 iy
k

or N f Kae=1
0
k
or _ Nz_ [’ﬁJ =1
19
1/2
N = ri
kS
: 5\_1/2
Hence the normalised function is [; X2

Example 2.4. Show thaty; =x and y, = x? are orthogonal over the interval

— k =x = k[ k is a constant].
By the condition (2.19)

121 (i _1la_
= 4l w4 g

Thus, the wavefunction ¥, and y, are orthogonal over the interval
—k<x=k



Significance of Schrodinger Wave Equation

Total energy = Kinetic energy + Potential energy
= FE¥Y =KV + VY
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From classical mechanics, k = Emvz =__ mv 2 = — = — (pZ + Py + p2)
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